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Abstract. It  is shown that the non-polynomial oscillator represented by V ( x )  = 
x2+ A x 2 / (  1 + gx2) can be given a supersymmetric form if the parameter A satisfies a certain 
constraint. In this case we find an exact analytic expression for the ground state. Excited 
states corresponding to this potential are computed for several values of g (and A )  using 
the supersymmetric W K B  method, the ordinary W K B  method and also numerical integration. 
The results are compared. 

1. Introduction 

Supersymmetric quantum mechanics (SUSYQM) was introduced by Witten [ 11 as a 
laboratory to test supersymmetry breaking. However, at present SUSYQM is not just a 
laboratory to study to SUSY breaking but is widely studied in various other contexts 
[2]. Very recently Comtet er a1 [3] formulated a supersymmetric version of the WKB 

method (SWKB). Later this method was applied in the cases of some exactly solvable 
potentials [4] (for which the exact bound-state spectrum is reproduced) as well as 
some non-exactly solvable models [5]. 

In the SWKB approach, first of all the potential has to be supersymmetrised and 
this naturally sets constraints on the parameters of the theory (thereby truncating the 
range of values of the parameters). However, even with fhis built-in limitation the 
method would be considered powerful if it produced reasonably good results (compared 
to other methods, e.g., the ordinary WKB method) for such a restricted range of 
parameters. In this paper our purpose will be to examine this issue. 

Here we shall show that when the parameter A is restrained by a particular relation 
the interaction [6] V ( x )  = x’ + Ax’ / (  1 + gx2) becomes supersymmetric. In this case an 
exact analytic expression for the ground state can be found out almost trivially. 
Although the non-polynomial interaction has been studied comprehensively by per- 
turbative as well as numerical methods [7-lo], no WKB evaluation has been carried 
out so far. In the present paper we shall compute the excited states (as well as the 
ground state in some cases) of the supersymmetrised non-polynomial oscillator by the 
SWKB method, the ordinary W K B  method and also numerical integration techniques. 
The computation of energy eigenvalues will be carried out in two steps: in the first 
phase the computation will be done for E!! = 0, while in the second phase we shall 
perform the computation with E O Z O  (it should be mentioned here that no SWKB 
computation has been carried out so far with non-vanishing ground-state energy). This 
will allow us to make a comparison between the. performance of the SWKB method 
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and the W K B  method when compared against accurate values obtained by numerical 
integration. It may be mentioned here that the energy values we have obtained by 
numerical integration are usually different from those obtained by Bessis and Bessis 
[ l l ]  and Lai and Lin [12] due to our choice of SUSY values of A ;  however, when our 
choice of (A,  g) values agrees with the standard choice [ 11,121, the energy values agree 
identically. 

The organisation of the paper is as follows: in § 2 we present an overview of S ~ S Y Q M  

[ 131 and derive the constraint due to which the non-polynomial interaction becomes 
supersymmetric; § 3 contains a description of the SWKB method and computation of 
the energy values by different methods; and, finally, P 4 is devoted to a discussion of 
the results obtained. 

2. SUSYQM in one dimension and the non-polynomial interaction 

We recall that in one dimension the Hamiltonian of a SUSYQM system consists of the 
following pair of Hamiltonians [13]: 

H s = ( H +  0 H- O )  

H,= -d2/dX2+ V,(X) 

V*(x) = W’(X) * W’(x) 

where W(x) is called the superpotential. The ground-state (of zero energy) wavefunc- 
tions corresponding to H, are given by 

cp%) - exp( * W( t )  dt)  

Next, to show how the non-polynomial interaction represented by 
and the ground state is normalisable if cp:(x) + 0 as x + fa. 

Ax2 A A  1 
V(x) = x2 + ( 1 + gx2) = xz + - - - 

g g( l+gx2)  

fits into the SUSY framework, we choose the following superpotential: 

w ( x ) = px - 2 gx / ( 1 + gx2). 

The scalar potentials V,(x) corresponding to (6) are given by 

V-(x) = px2+ %+4P - 5 p  
(1 +gx2) 

V+(x) = p2x2- -3p. 
(1 + gx2) (1 + gx2)2 

2g-4p + 8g2x2 

(4) 

(7) 

It is clear that we have to identify the non-polynomial interaction with V-(x) and if 
(5 )  is identical with (7) we have 
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and the relation between the energy eigenvalues is given by 

E - + 5 p =  ENp-Alg. (11) 
Hence if we know E- then ENP becomes known through 

ENP= E-+5p+Alg .  
Note that the ground-state wavefunctions are given by (obtained from ( 4 ) )  

cp",x) - (1 +gx2)- '  exp(fpx2) 
cpo"(x) - (1  + gx') exp( -fpx'). 

(12) 
(13) 

From (12) and (13) it follows that if p = + 1  then cp!(x) is normalisable (with E'?=O) 
while if p = -1 then cp?(x) is normalisable (with E: = 0). 

3. Spectrum of the SUSY non-polynomial oscillator 

In this section we shall find an exact analytic expression for the ground state whenever 
A satisfies (9) and p = +l.  For this case the excited states are computed using the 
SWKB, the WKB and numerical integration methods. For p = -1, E- # 0 and all the 
states, including the ground state, will be found by the above methods. 

Let us consider p = +l.  In this case we have 
cp'?(x) - (1 + gx') exp(-tx') (14) 

EONp= A/g+5 (15) 

-A / g  = (2g + 4). (16) 
To test the credibility of the above results let us check them against the values of the 
parameters used by other authors. To this end we take 

Then from (14) and (15) we get 

where 

g = 0.1 A = -0.42. (17) 

p'?( x)  - (1 + Ax2) exp( -4x') (18) 
EONp = 0.8 (19) 

and this agrees with the result of [14]. 
Before moving over to the computation of the excited states let us briefly describe 

the SWKB method [3-51. First note that the standard WKB quantisation rule is (we 
consider the bosonic sector): 

d x [ E l - (  W2-hW')] ' '2=.rr(n+f)h.  (20) I 
Expanding the LHS of (20) in powers of h we obtain 

w 
jabdx(E!!- W2)"2+fh lab dx ( E ! ! - W )  . . .  =. r r (n+f )h  (21) 

where a and b are the turning points defined by 

Therefore the SWKB quantisation condition to leading order in h is 
W2( a )  = W2( b) = E 1. (22) 

r b  

J dx( E l  - W2)"2 = r n h ,  n =0 ,  1 , 2 , . .  . .  
a 
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Preceeding similarly, the S W K B  quantisation condition for the fermionic sector can be 
found to be [3] 

I f  dx( E :  - W’)”’ = r ( n  + l ) R .  

From (23) and (24) it is easily seen that level degeneracy holds, i.e. 

E l + ’ =  E : .  

For the non-polynomial interaction some of the relevant expressions are 

= m h  4 W 2  - 
(1  + gx’) (1 + gx2)2 

j a b d x (  E ! - p 2 x 2 +  

where the former is the SWKB result and the latter is the ordinary W K B  result. 

(we skip the algebraic details and the results are summarised in tables 1 and 2). 
The integrals on the LHS of (26) and (27) can be evaluated by an iteration procedure 

Table 1. Energy eigenvalues together with percentage error for = +1 and € 0  = 0. Values 
obtained by numerical integration for g = 0.1 and A = -0.42 agree identically with values 
obtained by Fack et a/ [ 141. 

~ ~~~ 

Percentage Percentage Numerical 
g A n W K B  error SWKB error integration 

0.05 -0.205 0 0.8962 0.422 0.9000 0 0.9000 
1 2.7122 0.084 2.7151 0.022 2.7145 
2 4.5531 0.032 4.5554 0.017 4.5546 
3 6.4134 0.015 6.4153 0.014 6.4144 
4 8.2892 0.008 8.2908 0.010 8.2899 
5 10.1778 0.005 10.1791 0.007 10.1783 

0.1 -0.42 0 0.7848 1.9 0.8000 0 0.8000 
1 2.4510 0.191 2.4598 0.166 2.4557 
2 4.1959 0.047 4.2016 0.088 4.1979 
3 5.9905 0.015 5.9946 0.053 5.9914 
4 7.8197 0.005 7.8227 0.033 7.8201 
5 9.6744 0.001 9.6767 0.022 9.6745 

0.15 -0.645 0 0.6666 4.77 0.7000 0 0.7000 
1 2.2166 0.130 2.2313 0.531 2.2195 
2 3.9032 0.033 3.9117 0.184 3.9045 
3 5.6646 0.003 5.6701 0.093 5.6648 
4 7.4738 0.022 7.4776 0.053 7.4736 
5 9.3163 0.003 9.3191 0.033 9.3160 

0.2 -0.88 0 0.5435 9.41 0.6000 0 0.6000 

2 3.6558 0.024 3.6660 0.025 3.6567 
3 5.3988 0.014 5.4050 0.129 5.3980 
4 7.1984 0.008 7.2025 0.065 7.1978 
5 9.0361 0.006 9.0390 0.038 9.0335 

1 2.0060 0.194 2.0257 1.17 2.0021 
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Table2. Energy eigenvalues with p = -1 and E? f 0. Values obtained by numerical 
integration for A = 2.0, g = 1.0 agree identically with values obtained by Bessis and 
Bessis [ 113. 

~~~~ ~ ~ 

Percentage Percentage Numerical 
g A n W K B  error S W K B  error integration 

0.1 

0.2 

0.3 

0.4 

0.5 

1 .o 

0.38 

0.72 

1.02 

1.28 

1.5 

2.0 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

1.1649 
3.4446 
5.6723 
7.8614 

10.0211 
12.1581 

1.2825 
3.7109 
6.0172 
8.2468 

10.4257 
12.5699 

1.3699 
3.8817 
6.2125 
8.4434 

10.61 48 
12.748 1 

1.4350 
3.9902 
6.3200 
8.5386 

10.6957 
12.8152 

1.4825 
4.0541 
6.3700 

10.7 126 
12.8188 

1.5309 
3.9820 
6.1778 
8.2914 

10.3677 
12.4235 

8.5612 

0.682 1.1551 
0.127 3.4376 
0.044 5.6672 
0.017 7.8576 
0.006 10.0182 
0.003 12.1557 

1.648 1.2533 
0.202 3.6941 
0.041 6.0068 
0.008 8.2399 
0.001 10.4210 
0.002 12.5664 

2.545 1.3179 
0.201 3.8563 
0.020 6.1984 
0.004 8.4348 
0.008 10.6091 
0.007 12.7441 

3.319 1.3593 
0.150 3.9578 
0.006 6.3035 
0.015 8.5288 
0.01 1 10.6893 
0.008 12.8108 

3.984 1.3830 
0.071 4.0159 
0.023 6.3515 
0.023 8.5606 

0.009 12.8 140 

5.776 1.3281 
0.410 3.9265 
0.01 1 6.1524 
0.042 8.2764 
0.007 10.3576 
0.010 12.4162 

0.014 10.7058 

0.164 1.1570 
0.075 3.4402 
0.045 5.6698 
0.030 7.8600 
0.021 10.0204 
0.016 12.1577 

0.665 1.2617 
0.025 3.7034 
0.131 6.0147 
0.075 8.2461 
0.046 10.4258 
0.030 12.5702 

1.347 1.3359 
0.454 3.8739 
0.206 6.2112 
0.106 8.4438 
0.062 10.6157 
0.038 12.7490 

2.13 1.3889 
0.662 3.9842 
0.267 6.3204 
0.129 8.5399 
0.071 10.6969 
0.042 12.8 163 

2.995 1.4257 
0.871 4.0512 
0.627 6.3715 
0.146 8.5732 
0.077 10.7141 
0.046 12.8200 

8.236 1.4473 
1.798 3.9984 
0.422 6.1785 
0.223 8.2949 
0.105 10.3685 
0.069 12.4248 

4. Discussion of the results 

In this paper we have computed the energy eigenvalues of the non-polynomial oscillator 
when the coupling constants A and g satisfy a supersymmetric constraint. The computa- 
tion has been done by the supersymmetric W K B  method, the W K B  method and numerical 
integration. 

The computation of the eigenvalues has been carried out in two phases. In the 
first phase we have considered p = +1 resulting in vanishing ground-state energy 
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( E !  = 0). In this case the S W K B  method gives the exact value of the ground-state energy 
of the non-polynomial oscillator. On the other hand, the standard W K B  method gives 
a reasonable approximation to the ground-state energy. However, i t  can be seen from 
table 1 that, as n increases, the W K B  method starts giving better results. 

The second part of the computation deals with the more interesting case p = -1. 
In this case the ground-state energy is non-vanishing, i.e. E !  # 0 and  neither the W K B  

method nor the S W K B  method give the exact value of the ground-state energy. However, 
even in this case the ground-state energy values calculated via the S W K B  method come 
nearer to the exact values than those calculated via the W K B  method. But with increasing 
n the previous trend continues, i.e. W K B  values are in excellent agreement with the 
exact values while the S W K B  values are in reasonable agreement. 

Therefore, we conclude that for n > 1 the W K B  method is superior to the S W K B  

method while for n = 0, 1 the reverse is true. It is, however, possible that in the E! # 0 
case the S W K B  values may improve if O( h 2 )  corrections are taken into account (although 
the same correction could also be applied to the W K B  case). 
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